Code: EC3T1

II B.Tech - I Semester-Regular/Supplementary Examinations

November 2016

ENGINEERING MATHEMATICS - III (ELECTRONICS AND COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Write the condition for the convergence of the Newton Raphson's formula $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$
b) Establish a relationship between the forward difference operator Δ and the shift operator E .
c) Using Euler's method find $y(0.1)$, given that

$$
y^{\prime}=\left(x^{3}+x y^{2}\right) e^{-x}, y(0)=1
$$

d) Given that $\frac{d y}{d x}=x+y, y(1)=1$, find a first approximation formula by Picard's method to find y at given x.
e) Separate the real and imaginary parts of $f(z)=\sin z$.
f) Show that the imaginary part of $f(z)=e^{z}$ is a harmonic function.
g) Evaluate the integral $\int_{0}\left(x^{2}-i y\right) d z$ along the line $\mathrm{y}=\mathrm{x}$.
h) Expand $f(z)=\frac{z-1}{z^{2}}$ in Taylor series about the point $\mathbf{Z}=1$.
i) Find the residues at the poles of $f(z)=\cot z$ in $(-\pi / 2, \pi / 2)$.
j) Write the statement of Cauchy's Residue theorem.
k) Define conformal mapping and state the sufficient condition for the function $w=f(z)$ to represent conformal mapping.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.

a) Find a real root of the equation $2 x-\log _{10} x=7$ by the Method of false position.

8 M
b) A curve passes through the points $(0,18)$, (1,10), $(3,-18)$ and $(6,90)$. Find the slope of the curve at $\mathrm{x}=2$.

8 M
3.
a) Tabulate $y(0.1), y(0.2)$ using Taylor series method given that $y^{\prime}=y^{2}+x$ and $y(0)=1$
b) Using Milnes Predictor - corrector method find the solution of the equation $y^{\prime}=x-y^{2}$ at $\mathrm{x}=0.8$, given that $y(0)=0, y(0.2)=0.02, y(0.4)=0.0795, y(0.6)=0.1762 \quad 8 \mathrm{M}$
4.
a) Prove that the function $\quad f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0$

$$
=0, z=0
$$

satisfies Cauchy - Riemann equations at origin, yet $f^{\prime}(0)$ does not exist.
b) Find an analytic function whose real part is $e^{-x}(x \sin y-y \cos y)$

8 M
5.
a) Evaluate $\int_{c} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$ where C is $|\mathrm{z}|=4$.

8 M
b) Obtain all possible Laurent series of the function $\frac{7 z-2}{(z+1) z(z-2)}$ about $z_{0}=-1$
6.
a) Show that $\int_{0}^{\pi} \frac{d \theta}{a^{2}+\sin ^{2} \theta}=\frac{\pi}{a \sqrt{1+a^{2}}}$ for $a>0$ using Residue theorem. 8 M
b) Show that the transformation $w=\frac{1}{z}$ maps a circle to a circle or to a straight line if the former passes through origin.

